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We report herein the first examples of porphyrin-contain-
ing reagents which act as 1,3-dipoles and illustrate their
value in rigid structure formation. In the past, the synthesis
of custom-designed porphyrins1 relied on adaptations to the
primary porphyrin ring synthesis in order to incorporate the
required effector,2 while others have utilized carbonyl, amine
condensation reactions of preformed porphyrin diamines or
porphyrin diones.3 We have recently reported the use of
dienophilic porphyrin Diels-Alder4 reagents in synthesis,8
and we now show that our new porphyrin reagents have far
more potential for the synthesis of rigid diads. By using our
ACE BLOCK assembly protocol,9 different topologies of the
chromophores can be achieved on the rigid alicyclic frame-
work of the diad product. As both the porphyrin and the
ligand BLOCKs described herein are available in right-
angled and obtuse-angled BLOCK geometries, so their
stereoselective fusion yields geometric variants where the
interchromophoric alignment depends on BLOCK selection
and an appreciation of the shape of the frame linking them
(see Scheme 2).

The right-angled porphyrin BLOCK 5 was prepared
(Scheme 1) in three steps from the known alicyclic R-dione
1.10 Ruthenium-catalyzed addition11 of dimethylacetylene
dicarboxylate (DMAD) to the norbornene π-bond of 1 yielded
the cyclobutene 1,2-diester 2 (20% yield, mp 276 °C) which

was condensed with the “Crossley porphyrin diamine” 33 to
form the linked porphyrin.4 This was metalated (90% yield,
mp >350 °C), prior to epoxidation (tBuO2H, MeLi, -78 °C)
to furnish the porphyrin cyclobutene epoxide 5 (52% yield,
mp >350 oC). The obtuse-angled porphyrin epoxide 8 was
produced in a similar manner, following our previously
reported protocol.8,9

Reaction of the right-angled 1,10-phenanthroline BLOCK
912 with the obtuse-angled porphyrin BLOCK 8 (which is
thought to generate the active intermediate 1,3-dipole under
the thermal reaction conditions) occurs on heating in THF
(160 °C, sealed tube)13 with high diastereoselectivity to
produce a single adduct, 12.14 Similar reaction of right-
angled 1,10-phenanthroline BLOCK 9 with the right-angled
porphyrin BLOCK 5 afforded the ligated porphyrin 11, while
linking of the obtuse-angled 1,10-phenanthroline BLOCK 10
with the right-angled porphyrin BLOCK 5 produced the
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coupled diad 13a. The exo,exo-stereoselectivity of ACE
coupling is well established with norbornene dipolaro-
philes,9,15 and this allows the geometry of the chromophores
in the individual BLOCKs to be carried over into the
products with structural certainty. The relative orientation
of the chromophores is modified by the topography of the
slightly curved molecular framework separating them, and
this effect can be assessed by molecular modeling (Scheme
2). The AM1 optimized structures161718 of the coupled

products 11-13a (Figure 1) indicate that the coupling of two
right-angled BLOCKs in this curved-linker series gives a
product where the orientation of the two chromophores is
33° off-parallel (cf. 11). By way of contrast, coupling of the
obtuse-angled porphyrin BLOCK 8 plus right-angled phen
BLOCK 9 is a combination which has the chromophores
essentially parallel (cf. 12). The chromophores only approach
an orthogonal orientation when obtuse-angled phenanthro-
line BLOCK 10 is coupled with the right-angled porphyrin
BLOCK 5 (cf. 13).

In summary, we have demonstrated a versatile building
BLOCK route for preparing new types of porphyrins that
are linked to 1,10-phenanthroline ligands. Each effector
BLOCK type is available in different geometries (obtuse and
right angled BLOCKs are illustrated herein), and this allows
preparation of porphyrin/ligand systems where the align-
ment and separation of the rigidly attached chromophores
can be modified over a wide range. We have recently
reported the development of modified polynorbornanes with
rodlike frames,17 and currently we are applying this to
develop new architectures. In addition, we have developed
metalated versions of the phenanthroline BLOCKs18 dis-
cussed above and are currently studying the coupling of
these complexes with porphyrin BLOCKs to yield mixed
metalated systems.
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Figure 1. Geometry optimization (AM1) of structures 11-13.
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